
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

Solving Nonogram Puzzle Using Backtracking

Algorithm

Christine Hutabarat - 13520005

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail : 13520005@std.stei.itb.ac.id

Abstract—Nonogram is a logic drawing puzzle in which the

player needs to fill cells in a grid with black or white according to

the description given to the corresponding columns and rows.

Backtracking algorithm is a problem-solving technique that

considers only the choices leading to the solution, pruning all

other invalid states. This paper discusses how backtracking

algorithm can be used to solve nonogram puzzles by

systematically turning white grids to black then immediately

going back to the previous state and choosing a different step as

the latest row/column state violates the rule given to it. The

problem is modeled using both mathematical expressions and

regular expressions. The backtracking method has proven to be

efficient for solving nonogram puzzles by significantly reducing

the search space.

Keywords—nonogram; puzzle; backtracking algorithm; regular

expression

I. INTRODUCTION

Nonogram or Japanese puzzle is a logic drawing puzzle
consisting of a pixel grid in which each of the pixels should be
colored according to the rule given to its corresponding column
and row. The nonogram grid has a rectangle shape, but the size
of the grid varies as there is no restriction to it. Outside of the
grid, next to each column or row border, there is a set of
integers which describes how many and how long separated
lines should be drawn in that column or row. The final state of
the colored grid usually creates a pixel image.

Fig. 1 and Fig. 2 give an example of a nonogram puzzle
with the size of 25x25. Fig. 1 shows the unsolved state of the
puzzle, and Fig. 2 shows the solved state, or the solution of the
puzzle. The numbers above and next to the grid are the puzzle
rules. For example, the number 1 above the leftmost column
indicates that there should be one black line of the same length
as the length of one cell in that column. The set of numbers 7
and 3 next to the second uppermost row tells us that there
should be two black lines separated by one or more white cells,
in which the first or the leftmost line has a length of 7 and the
second line has a length of 3. By following the rules, a hidden
pixel image of a dolphin is revealed.

Most nonogram puzzles can be solved even by relying on
the rules given, with the help of logic or common sense.
Fujiwara in [4] categorized and explained some of these
common senses. Yu, Lee, and Chen in [3] expressed the logical

rules in mathematical equations and also applied them to a
computer program that is designed to solve nonogram puzzles.

Fig. 1. An example of unsolved nonogram puzzle [6]

Fig. 2. An example of solved nonogram puzzle [6]

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

Although the mere use of logical rules yields correct results
most of the time, some puzzles take a lot of time to solve with
this method. To improve efficiency, logical rules are used
along with backtracking algorithm.

The backtracking algorithm is a problem-solving technique
similar to the exhaustive search algorithm that can be
represented as a tree. However, this technique is more efficient
than exhaustive search since the key point of this algorithm is
to prune branches that are not leading to the solution, thus
reducing the search space. Therefore, the backtracking
algorithm is considered the improved version of exhaustive
search.

In the backtracking algorithm, the rules or constraints for
the final state are given in the bounding function. Starting from
the root node, in every step taken, if the current state does not
satisfy the constraints, then go back one step and choose
another path, generating a new node in the tree. Go back to the
previous state if there is no other option available. These steps
are repeated recursively until the solution state is found or all
possible solutions have been checked. Having all the states
generated in the tree would be the worst-case scenario of the
backtracking algorithm. The best-case scenario for this
algorithm is when the starting state is also the final state.

Since the choices made in the backtracking algorithm
depend heavily on the rules for the solution, it becomes easy to
deduce that backtracking is suitable for solving the nonogram
puzzle. Yu, Lee, and Chen proposed an algorithm which makes
use of backtracking and eleven logical rules to solve nonogram
puzzles in [3]. A similar idea will be analyzed in this paper.
However, the rules used are not specific as they are simplified
in many ways. The following section explains how these rules
are modeled and generated.

II. MODELING THE PROBLEM

To solve the nonogram puzzle with backtracking algorithm,
the bounding function needs to be determined. This can be
done by converting the set of rules given in the puzzle into
more specific functions. But prior to doing that, in order to
simplify the method, let the initial state of the puzzle be a grid
whose cells are all painted in white. Therefore, the method that
is going to be discussed will change the state by turning the
white grid to black. This way, backtracking can also be seen as
painting the cells in a column or row that violate the rules back
to white.

Fig. 3. An example of a 5x5 nonogram puzzle

To define the problem formally, the parameters described
in Table 1 will be used for further steps of modeling and
calculation.

TABLE I. LIST OF PARAMETERS

Parameter Description

m The length or the number of columns in the grid

n The width or the number of rows in the grid

ci The i-th column (index of column increasing from left

to right, starting from 1)

ri The i-th row (index of row increasing from top to

bottom, starting from 1)

wx The amount of white cells present in column/row x

bx The amount of black cells present in column/row x

brx The amount of required black cells in column/row x

wrx The amount of required white cells in column/row x

From Fig. 3, it is known that for each row or column, bx = 0
and wx = 5. It can also be seen that m = 5 and n = 5. This
means that for each row and each column,

 brx + wrx =  ()

Now pay attention to the rules for the first column. The sum
of the numbers in the set is the value of b, so we have brc1 = 1.
By assigning this value to Eq. (1), we have wrc1 = 4. This will
be the first constraint for the first column. As another example,
look at the second row. The sum of numbers is 3, so brr2 = 3.
By assigning brr2 = 3 to Eq. (1), we know that wrr2 = 2. Apply
this rule to get the first constraint for each column and row.

TABLE II. CELL AMOUNT RULE FOR ROWS

Index of row (i) brri wrri

1 1 4

2 3 2

3 1 4

4 3 2

5 1 4

TABLE III. CELL AMOUNT RULE FOR COLUMNS

Index of column (i) brci wrci

1 1 4

2 3 2

3 1 4

4 3 2

5 1 4

A regular expression will be used to define the pattern of
black and white cells in every column or row. For example,
look at the rules given to the first row. There should be only
one cell-long black line. This line can be drawn at the leftmost
side of the row, at the rightmost side of the row, or in between.
Now let B represent a black cell and W represent a white cell.
Using regular expression, the pattern of cells in the first row
can be written as

W*BW*

The pattern would mean: zero or more white cells, followed
by one black cell, followed by zero or more white cells.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

Let us now try to formally define the pattern for the second
column. The pattern would be expressed as

W*B{2}W+BW*

Explained in words, the pattern would mean: zero or more
white cells, followed by exactly two black cells, followed by
one or more white cells, followed by one black cell, followed
by zero or more white cells. This expression will be the second
constraint for the third column. Apply this to every column and
row to get the cell pattern.

 Using the new derived constraints stated in Table II, Table
III, Table IV, and Table V, the puzzle can be solved with
backtracking algorithm with these rules as the bounding
functions. The constraints are grouped according to their
corresponding columns or rows in Table VI.

TABLE IV. PATTERN RULE FOR ROWS

Index of row Pattern

1 W*BW*

2 W*BW+B{2}W*

3 W*BW*

4 W*B{2}W+BW*

5 W*BW*

TABLE V. PATTERN RULE FOR COLUMNS

Index of column Pattern

1 W*BW*

2 W*B{2}W+BW*

3 W*BW*

4 W*BW+B{2}W*

5 W*BW*

TABLE VI. CONSTRAINTS FOR COLUMNS AND ROWS

Column/Row

(x)

brx wrx Pattern

r1 1 4 W*BW*

r2 3 2 W*BW+B{2}W*

r3 1 4 W*BW*

r4 3 2 W*B{2}W+BW*

r5 1 4 W*BW*

c1 1 4 W*BW*

c2 3 2 W*B{2}W+BW*

c3 1 4 W*BW*

c4 3 2 W*BW+B{2}W*

c5 1 4 W*BW*

To simplify the algorithm, every step taken would fill the
current row with the valid pattern if the method is done row-
wise. This means that in every iteration the columns might be
in three possible states: solved, violated, or not violated but not
solved, and the pattern rules for the rows are strictly enforced.
The solved state means that the configuration of black and
white cells in the corresponding column satisfies all of its rules.
Since we initially painted all cells white and we will paint some
of them black through the algorithm, we can consider a column
not violated but not solved if it does not satisfy the pattern rule,
but the number of black cells painted already in the column is
no more than the black cells required. The expression can be
written mathematically as:

 bci ≤ brci (2)

With this being said, a column will be considered violated
if its cell configuration does not satisfy the pattern rule, as well
as the rule expressed in Eq. 2.

The same thing goes for the puzzle solved column-wise. If
it is done column-wise, then in each step the current column
will be filled with one of its possible patterns, and each row
will have three possible states: solved, violated, not violated
but not solved, as explained in the previous paragraph. The
extra rule for determining whether a row is not violated but not
solved will be

 bri ≤ brri (3)

In this approach, the pattern rules for columns will be
strictly enforced in each step, and a row will be considered as
violated if the cell configuration does not satisfy the pattern
rule and Eq. 3.

III. SOLVING THE PROBLEM

The initial state of the puzzle is a 5x5 grid, as shown in Fig.
3. The final state of the puzzle will be the state when every
column and row rule is in the solved state. In this sample case,
a path to the final state is guaranteed to exist. We will be using
the column-wise approach to solve this puzzle.

 Let us look at the first steps taken in solving this puzzle.
The first column requires only one black cell, and it can be
anywhere in the column. The first possible cell configuration
for this rule is shown in Fig. 4.

Fig. 4. A new state generated from the initial state

Fig. 5. A new state generated from the state shown in Fig. 4

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

Notice that the pattern of cells in the first row is not
violated, and the first row can even be considered solved. Since
there is no rule violated so far, we continue iterating to the
second column. The second column requires three black cells
and two white cells, creating the pattern W*B{2}W+BW*. The
first possible configuration satisfying these rules is shown in
Fig. 5.

Pay attention to the first row. It now has two black cells and

three white cells. Since 2  br1, we can say that the first-row
rule is violated. This means that we need to go back one step
and check on another possible pattern for the second column.
Remember that our previous state is shown in Fig. 4.

The method used to generate the combination of cells in a
column or row is not discussed in this paper. However, we will
use one of the common senses to solve nonogram puzzle
suggested by Fujiwara in [4]. This is done just so we can
search for the next pattern systematically. We can see that in
the state shown in Fig. 5, the second column has black cells on
its edge. By applying the black-edge common sense, the
following sequence of black cells can be extended towards the
bottom edge. Thus, revealing the next possible pattern of this
puzzle. The state mentioned is shown in Fig. 6.

The latest state generated also violates the first row rule
from Eq. 3, so backtracking needs to be done again. In the
current state, black-edge common sense cannot be used.
However, notice that there is another possible pattern for the
second column that can be found by moving the first black line
one cell towards the bottom edge. The result can be seen in Fig.
7.

Fig. 7. displays the next pattern for the second column. Notice
that the first row is satisfied already, and the other rows are not
violated and not solved. The pattern rule for rows 2-5 might not
be satisfied, but the rule from Eq. 3 is not violated. Since there
is no violation, continue the algorithm by generating a child
from the current state. From this point, the algorithm will
continue to generate and backtrack until it finds the final state.
All of the states generated with this algorithm are shown in Fig.
8 as a tree.

Fig. 6. A new state generated from the state shown in Fig. 4

Fig. 7. A new state generated from the state shown in Fig. 4

Fig. 8. The tree generated from solving nonogram shown in Fig. 3 with

backtracking algorithm

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

IV. ANALYSIS ON EFFICIENCY

In the previous section, a 5x5 nonogram puzzle was solved,
generating 46 nodes through the process. If exhaustive search
was used instead, every combination of the valid pattern for
each column would be generated and checked. Table VII
contains the actual possible pattern for each column in the
puzzle.

Using the information in Table VII, the number of
combinations can be calculated. Hence, by multiplying all the
total number of possible patterns, we know that 1125
combinations will be generated by the exhaustive search
method. These are the combinations of all five columns with
their valid patterns.

Meanwhile, the backtracking algorithm only generates 46
nodes, with two of them being actually subsets of the column
combinations. These two states are in the sixth layer of the tree
in Fig. 8. This shows us that in the sample case, the
backtracking algorithm eliminates 1123 possible combinations
of columns as well as the steps leading to them.

TABLE VII. PATTERN RULE FOR COLUMNS

Index of column Valid Pattern Total

1

BW{4}

5

WBW{3}

W{2}BW{2}

W{3}BW

W{4}B

2

B{2}WBW

3 B{2}W{2}B

WB{2}WB

3

BW{4}

5

WBW{3}

W{2}BW{2}

W{3}BW

W{4}B

4

BWB{2}W

3 BW{2}B{2}

WBWB{2}

5

W*BW*

5

BW{4}

WBW{3}

W{2}BW{2}

W{3}BW

V. CHOOSING THE RIGHT APPROACH

Using the column-wise approach, we know that for a
nonogram puzzle with the size of m x n, the maximum number
of possible patterns for a column is n, that is, if the column
only requires one black cell. It means that the worst-case
scenario will generate nm combinations if the puzzle is done
using exhaustive search. For the row-wise approach, each row
will have fewer than m different patterns. The worst-case
scenario for this approach will generate mn combinations. Since
there is no restriction on a nonogram puzzle size, then it can be
intuitively concluded that the row-wise approach should be
taken if mn < nm, and vice versa. Thus, if mn turns out to be
equal to nn, we might want to consider another factor.

Now look at the the nonogram in Fig. 9. Solving this puzzle
using the backtracking method with column-wise approach will
require 25 steps. On the other hand, if row-wise approach is
used, we will require only 5 steps to get to the final state from
the initial state. This shows us that the cell pattern of the final
state also plays an important role in choosing the right
approach.

Fig. 9. An example of a 5x5 nonogram puzzle

The cells in Fig. 9 tend to gather in a row, forming a single
horizontal line. With this information, we can guess that the
row-wise approach will give better results compared to the
column-wise approach. The information can also be extracted
merely from the puzzle rules, so it is not necessary to have a
picture of the final state. This statement, however, is not
discussed in this paper and still needs further analysis.

Yu, Lee, and Chen stated in [3] that the backtracking
method yields the correct solution with over 98% confidence.
The method also solves the puzzle fast, especially for those
with compact black cells. The backtracking algorithm helps
with the puzzle with the scattered black cells by pruning the
tree, which makes the search space smaller.

VI. CONCLUSIONS

In this paper, we have seen how the backtracking algorithm
can be used to solve nonogram puzzles. The method is
demonstrated using a 5x5 nonogram puzzle. There are two
types of approaches for the algorithm: the row-wise approach,
and the column-wise approach. The row-wise approach fills the
next empty row in the current step with its valid pattern. In
other words, the row-wise approach finds the possible
combination of rows that are in a solved state and eliminates
those that violate the columns’ rules. On the other hand, the
column-wise approach fills the next empty column in the
current step with its valid pattern. This approach can also be
seen as finding the combinations of solved columns that do not
violate the rows’ rules.

The puzzle is modeled with mathematical equations to
express the rule on the number of black cells and white cells
for each column or row. And as for pattern, the rule is
expressed by regular expression, using W to represent a white
cell and B to represent a black cell. The pattern is used to find
the set of valid cell configurations of a row and check the cell
configurations of a column if the problem is approached row-
wise. If the problem is approached column-wise, the pattern
then is used to find the set of valid cell configurations of a
column and check the cell configurations of a row. In the

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

sample case, the nonogram puzzle is solved with column-wise
approach.

The tree yielded by the puzzle-solving process contains 47
nodes, in which one of them is the root node representing the
initial state, and only two of them are the states reaching the
last column. By using backtracking, over 99% of the
combinations are eliminated in the process without being
checked. Thus, it can be concluded that backtracking reduces a
significant number of states generated. This also supported by
Yu, Lee, and Chen in [3].

The size and expected cell pattern of a nonogram puzzle
about to be solved need to be considered for choosing the most
efficient approach. This step has to be discussed further to
prove its validity.

Aside from how strong the correct approach is related to the
amount of time required to solve a nonogram puzzle using a
backtracking algorithm, the algorithm has been shown to
produce correct results 98% of the time. Given that it also
provides quick solutions, the backtracking algorithm is
efficient for sloving nonogram puzzles.

REFERENCES

[1] K. J. Batenburg, S. Henstra, W. A. Kosters and W. J. Palenstijn,
"Constructing Simple Nonograms of Varying Difficulty," Pure Math.
Appl., vol. 20, pp. 1-15, 2009.

[2] I.-C. Wu, D.-J. Sun, L.-P. Chen, K.-Y. Chen, C.-H. Kuo, H.-H. Kang
and H.-H. Lin, "An Efficient Approach to Solving Nonograms," IEEE
Transactions on Computational Intelligence and AI in Games, vol. 5, no.
3, pp. 251-264, 2013.

[3] C.-H. Yu, H.-L. Lee and ·. L.-H. Chen, "An efficient algorithm for
solving nonograms," Applied Intelligence, vol. 35, pp. 18-31, 20011.

[4] H. Fujiwara, "Nonogram Solution Class: Basic Common Sense," 27
November 2000. [Online]. Available:
http://www.pro.or.jp/~fuji/java/puzzle/nonogram/knowhow.elem-4.html.
[Accessed 20 May 2022].

[5] Gambiter, "Nonogram," [Online]. Available:
https://gambiter.com/puzzle/Nonogram.html. [Accessed 16 May 2022].

[6] nonogram.org, "Japanese crossword «Dolphin»," 29 April 2020.
[Online]. Available: https://www.nonograms.org/nonograms/i/32344.
[Accessed 18 May 2022].

[7] nonograms.org, "Japanese crossword «Fan»," 10 May 2022. [Online].
Available: https://www.nonograms.org/nonograms/i/56638. [Accessed
20 May 2022].

[8] R. Munir, ‘Algoritma Runut-balik (Backtracking) (Bagian 1)’, Sekolah
Teknik Elektro dan Informatika ITB, 2021.

[9] M. L. Khodra, ‘String Matching dengan Regular Expression’, Sekolah
Teknik Eletro dan Informatika ITB, 2022.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Mei 2022

Ttd

Christine Hutabarat

13520005

