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Abstract—Nonogram is a logic drawing puzzle in which the 

player needs to fill cells in a grid with black or white according to 

the description given to the corresponding columns and rows. 

Backtracking algorithm is a problem-solving technique that 

considers only the choices leading to the solution, pruning all 

other invalid states. This paper discusses how backtracking 

algorithm can be used to solve nonogram puzzles by 

systematically turning white grids to black then immediately 

going back to the previous state and choosing a different step as 

the latest row/column state violates the rule given to it. The 

problem is modeled using both mathematical expressions and 

regular expressions. The backtracking method has proven to be 

efficient for solving nonogram puzzles by significantly reducing 

the search space. 
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I.  INTRODUCTION  

Nonogram or Japanese puzzle is a logic drawing puzzle 
consisting of a pixel grid in which each of the pixels should be 
colored according to the rule given to its corresponding column 
and row. The nonogram grid has a rectangle shape, but the size 
of the grid varies as there is no restriction to it. Outside of the 
grid, next to each column or row border, there is a set of 
integers which describes how many and how long separated 
lines should be drawn in that column or row. The final state of 
the colored grid usually creates a pixel image. 

Fig. 1 and Fig. 2 give an example of a nonogram puzzle 
with the size of 25x25. Fig. 1 shows the unsolved state of the 
puzzle, and Fig. 2 shows the solved state, or the solution of the 
puzzle. The numbers above and next to the grid are the puzzle 
rules. For example, the number 1 above the leftmost column 
indicates that there should be one black line of the same length 
as the length of one cell in that column. The set of numbers 7 
and 3 next to the second uppermost row tells us that there 
should be two black lines separated by one or more white cells, 
in which the first or the leftmost line has a length of 7 and the 
second line has a length of 3. By following the rules, a hidden 
pixel image of a dolphin is revealed. 

Most nonogram puzzles can be solved even by relying on 
the rules given, with the help of logic or common sense. 
Fujiwara in [4] categorized and explained some of these 
common senses. Yu, Lee, and Chen in [3] expressed the logical  

rules in mathematical equations and also applied them to a 
computer program that is designed to solve nonogram puzzles. 

 

Fig. 1. An example of unsolved nonogram puzzle  [6] 

 

Fig. 2. An example of solved nonogram puzzle  [6] 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022 

 

Although the mere use of logical rules yields correct results 
most of the time, some puzzles take a lot of time to solve with 
this method. To improve efficiency, logical rules are used 
along with backtracking algorithm. 

The backtracking algorithm is a problem-solving technique 
similar to the exhaustive search algorithm that can be 
represented as a tree. However, this technique is more efficient 
than exhaustive search since the key point of this algorithm is 
to prune branches that are not leading to the solution, thus 
reducing the search space. Therefore, the backtracking 
algorithm is considered the improved version of exhaustive 
search.  

In the backtracking algorithm, the rules or constraints for 
the final state are given in the bounding function. Starting from 
the root node, in every step taken, if the current state does not 
satisfy the constraints, then go back one step and choose 
another path, generating a new node in the tree. Go back to the 
previous state if there is no other option available. These steps 
are repeated recursively until the solution state is found or all 
possible solutions have been checked. Having all the states 
generated in the tree would be the worst-case scenario of the 
backtracking algorithm. The best-case scenario for this 
algorithm is when the starting state is also the final state.  

Since the choices made in the backtracking algorithm 
depend heavily on the rules for the solution, it becomes easy to 
deduce that backtracking is suitable for solving the nonogram 
puzzle. Yu, Lee, and Chen proposed an algorithm which makes 
use of backtracking and eleven logical rules to solve nonogram 
puzzles in [3]. A similar idea will be analyzed in this paper. 
However, the rules used are not specific as they are simplified 
in many ways. The following section explains how these rules 
are modeled and generated.  

II. MODELING THE PROBLEM 

To solve the nonogram puzzle with backtracking algorithm, 
the bounding function needs to be determined. This can be 
done by converting the set of rules given in the puzzle into 
more specific functions. But prior to doing that, in order to 
simplify the method, let the initial state of the puzzle be a grid 
whose cells are all painted in white. Therefore, the method that 
is going to be discussed will change the state by turning the 
white grid to black. This way, backtracking can also be seen as 
painting the cells in a column or row that violate the rules back 
to white. 

 

Fig. 3. An example of a 5x5 nonogram puzzle 

To define the problem formally, the parameters described 
in Table 1 will be used for further steps of modeling and 
calculation.  

TABLE I.  LIST OF PARAMETERS 

Parameter Description 

m The length or the number of columns in the grid 

n The width or the number of rows in the grid 

ci The i-th column (index of column increasing from left 

to right, starting from 1) 

ri The i-th row (index of row increasing from top to 

bottom, starting from 1) 

wx The amount of white cells present in column/row x  

bx The amount of black cells present in column/row x  

brx The amount of required black cells in column/row x 

wrx The amount of required white cells in column/row x 

 

From Fig. 3, it is known that for each row or column, bx = 0 
and wx = 5. It can also be seen that m = 5 and n = 5. This 
means that for each row and each column, 

 brx + wrx =   () 

Now pay attention to the rules for the first column. The sum 
of the numbers in the set is the value of b, so we have brc1 = 1. 
By assigning this value to Eq. (1), we have wrc1 = 4. This will 
be the first constraint for the first column. As another example, 
look at the second row. The sum of numbers is 3, so brr2 = 3. 
By assigning brr2 = 3 to Eq. (1), we know that wrr2 = 2. Apply 
this rule to get the first constraint for each column and row. 

TABLE II.  CELL AMOUNT RULE FOR ROWS 

Index of row (i) brri wrri 

1 1 4 

2 3 2 

3 1 4 

4 3 2 

5 1 4 

TABLE III.  CELL AMOUNT RULE FOR COLUMNS 

Index of column (i) brci wrci 

1 1 4 

2 3 2 

3 1 4 

4 3 2 

5 1 4 

 

A regular expression will be used to define the pattern of 
black and white cells in every column or row. For example, 
look at the rules given to the first row. There should be only 
one cell-long black line. This line can be drawn at the leftmost 
side of the row, at the rightmost side of the row, or in between. 
Now let B represent a black cell and W represent a white cell. 
Using regular expression, the pattern of cells in the first row 
can be written as  

W*BW* 

The pattern would mean: zero or more white cells, followed 
by one black cell, followed by zero or more white cells. 
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Let us now try to formally define the pattern for the second 
column. The pattern would be expressed as 

W*B{2}W+BW* 

Explained in words, the pattern would mean: zero or more 
white cells, followed by exactly two black cells, followed by 
one or more white cells, followed by one black cell, followed 
by zero or more white cells. This expression will be the second 
constraint for the third column. Apply this to every column and 
row to get the cell pattern. 

 Using the new derived constraints stated in Table II, Table 
III, Table IV, and Table V, the puzzle can be solved with 
backtracking algorithm with these rules as the bounding 
functions. The constraints are grouped according to their 
corresponding columns or rows in Table VI. 

TABLE IV.  PATTERN RULE FOR ROWS 

Index of row Pattern 

1 W*BW* 

2 W*BW+B{2}W* 

3 W*BW* 

4 W*B{2}W+BW* 

5 W*BW* 

TABLE V.  PATTERN RULE FOR COLUMNS 

Index of column Pattern 

1 W*BW* 

2 W*B{2}W+BW* 

3 W*BW* 

4 W*BW+B{2}W* 

5 W*BW* 

TABLE VI.  CONSTRAINTS  FOR COLUMNS AND ROWS 

Column/Row 

(x) 

brx wrx Pattern 

r1 1 4 W*BW* 

r2 3 2 W*BW+B{2}W* 

r3 1 4 W*BW* 

r4 3 2 W*B{2}W+BW* 

r5 1 4 W*BW* 

c1 1 4 W*BW* 

c2 3 2 W*B{2}W+BW* 

c3 1 4 W*BW* 

c4 3 2 W*BW+B{2}W* 

c5 1 4 W*BW* 

 

To simplify the algorithm, every step taken would fill the 
current row with the valid pattern if the method is done row-
wise. This means that in every iteration the columns might be 
in three possible states: solved, violated, or not violated but not 
solved, and the pattern rules for the rows are strictly enforced. 
The solved state means that the configuration of black and 
white cells in the corresponding column satisfies all of its rules. 
Since we initially painted all cells white and we will paint some 
of them black through the algorithm, we can consider a column 
not violated but not solved if it does not satisfy the pattern rule, 
but the number of black cells painted already in the column is 
no more than the black cells required. The expression can be 
written mathematically as: 

 bci ≤ brci (2) 

With this being said, a column will be considered violated 
if its cell configuration does not satisfy the pattern rule, as well 
as the rule expressed in Eq. 2. 

The same thing goes for the puzzle solved column-wise. If 
it is done column-wise, then in each step the current column 
will be filled with one of its possible patterns, and each row 
will have three possible states: solved, violated, not violated 
but not solved, as explained in the previous paragraph. The 
extra rule for determining whether a row is not violated but not 
solved will be  

 bri ≤ brri (3) 

In this approach, the pattern rules for columns will be 
strictly enforced in each step, and a row will be considered as 
violated if the cell configuration does not satisfy the pattern 
rule and Eq. 3. 

III. SOLVING THE PROBLEM 

The initial state of the puzzle is a 5x5 grid, as shown in Fig. 
3. The final state of the puzzle will be the state when every 
column and row rule is in the solved state. In this sample case, 
a path to the final state is guaranteed to exist. We will be using 
the column-wise approach to solve this puzzle. 

  Let us look at the first steps taken in solving this puzzle. 
The first column requires only one black cell, and it can be 
anywhere in the column. The first possible cell configuration 
for this rule is shown in Fig. 4. 

 

 

Fig. 4. A new state generated from the initial state 

 

Fig. 5. A new state generated from the state shown in Fig. 4 
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Notice that the pattern of cells in the first row is not 
violated, and the first row can even be considered solved. Since 
there is no rule violated so far, we continue iterating to the 
second column. The second column requires three black cells 
and two white cells, creating the pattern W*B{2}W+BW*. The 
first possible configuration satisfying these rules is shown in 
Fig. 5. 

Pay attention to the first row. It now has two black cells and 

three white cells. Since 2  br1, we can say that the first-row 
rule is violated. This means that we need to go back one step 
and check on another possible pattern for the second column. 
Remember that our previous state is shown in Fig. 4.  

The method used to generate the combination of cells in a 
column or row is not discussed in this paper. However, we will 
use one of the common senses to solve nonogram puzzle 
suggested by Fujiwara in [4]. This is done just so we can 
search for the next pattern systematically. We can see that in 
the state shown in Fig. 5, the second column has black cells on 
its edge. By applying the black-edge common sense, the 
following sequence of black cells can be extended towards the 
bottom edge. Thus, revealing the next possible pattern of this 
puzzle. The state mentioned is shown in Fig. 6. 

The latest state generated also violates the first row rule 
from Eq. 3, so backtracking needs to be done again. In the 
current state, black-edge common sense cannot be used. 
However, notice that there is another possible pattern for the 
second column that can be found by moving the first black line 
one cell towards the bottom edge. The result can be seen in Fig. 
7. 

Fig. 7. displays the next pattern for the second column. Notice 
that the first row is satisfied already, and the other rows are not 
violated and not solved. The pattern rule for rows 2-5 might not 
be satisfied, but the rule from Eq. 3 is not violated. Since there 
is no violation, continue the algorithm by generating a child 
from the current state. From this point, the algorithm will 
continue to generate and backtrack until it finds the final state. 
All of the states generated with this algorithm are shown in Fig. 
8 as a tree. 

 

 

Fig. 6. A new state generated from the state shown in Fig. 4 

 

Fig. 7. A new state generated from the state shown in Fig. 4 

 

Fig. 8. The tree generated from solving nonogram shown in Fig. 3 with 

backtracking algorithm 
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IV. ANALYSIS ON EFFICIENCY 

In the previous section, a 5x5 nonogram puzzle was solved, 
generating 46 nodes through the process. If exhaustive search 
was used instead, every combination of the valid pattern for 
each column would be generated and checked. Table VII 
contains the actual possible pattern for each column in the 
puzzle. 

Using the information in Table VII, the number of 
combinations can be calculated. Hence, by multiplying all the 
total number of possible patterns, we know that 1125 
combinations will be generated by the exhaustive search 
method. These are the combinations of all five columns with 
their valid patterns.  

Meanwhile, the backtracking algorithm only generates 46 
nodes, with two of them being actually subsets of the column 
combinations. These two states are in the sixth layer of the tree 
in Fig. 8. This shows us that in the sample case, the 
backtracking algorithm eliminates 1123 possible combinations 
of columns as well as the steps leading to them. 

TABLE VII.  PATTERN RULE FOR COLUMNS 

Index of column Valid Pattern Total 

1 

BW{4} 

5 

WBW{3} 

W{2}BW{2} 

W{3}BW 

W{4}B 

2 

B{2}WBW 

3 B{2}W{2}B 

WB{2}WB 

3 

BW{4} 

5 

WBW{3} 

W{2}BW{2} 

W{3}BW 

W{4}B 

4 

BWB{2}W 

3 BW{2}B{2} 

WBWB{2} 

5 

W*BW* 

5 

BW{4} 

WBW{3} 

W{2}BW{2} 

W{3}BW 

 

V. CHOOSING THE RIGHT APPROACH 

Using the column-wise approach, we know that for a 
nonogram puzzle with the size of m x n, the maximum number 
of possible patterns for a column is n, that is, if the column 
only requires one black cell. It means that the worst-case 
scenario will generate nm combinations if the puzzle is done 
using exhaustive search. For the row-wise approach, each row 
will have fewer than m different patterns. The worst-case 
scenario for this approach will generate mn combinations. Since 
there is no restriction on a nonogram puzzle size, then it can be 
intuitively concluded that the row-wise approach should be 
taken if mn < nm, and vice versa. Thus, if mn turns out to be 
equal to nn, we might want to consider another factor. 

Now look at the the nonogram in Fig. 9. Solving this puzzle 
using the backtracking method with column-wise approach will 
require 25 steps. On the other hand, if row-wise approach is 
used, we will require only 5 steps to get to the final state from 
the initial state. This shows us that the cell pattern of the final 
state also plays an important role in choosing the right 
approach.  

 

Fig. 9. An example of a 5x5 nonogram puzzle 

The cells in Fig. 9 tend to gather in a row, forming a single 
horizontal line. With this information, we can guess that the 
row-wise approach will give better results compared to the 
column-wise approach. The information can also be extracted 
merely from the puzzle rules, so it is not necessary to have a 
picture of the final state. This statement, however, is not 
discussed in this paper and still needs further analysis. 

Yu, Lee, and Chen stated in [3] that the backtracking 
method yields the correct solution with over 98% confidence. 
The method also solves the puzzle fast, especially for those 
with compact black cells. The backtracking algorithm helps 
with the puzzle with the scattered black cells by pruning the 
tree, which makes the search space smaller. 

VI. CONCLUSIONS 

In this paper, we have seen how the backtracking algorithm 
can be used to solve nonogram puzzles. The method is 
demonstrated using a 5x5 nonogram puzzle. There are two 
types of approaches for the algorithm: the row-wise approach, 
and the column-wise approach. The row-wise approach fills the 
next empty row in the current step with its valid pattern. In 
other words, the row-wise approach finds the possible 
combination of rows that are in a solved state and eliminates 
those that violate the columns’ rules. On the other hand, the 
column-wise approach fills the next empty column in the 
current step with its valid pattern. This approach can also be 
seen as finding the combinations of solved columns that do not 
violate the rows’ rules.  

The puzzle is modeled with mathematical equations to 
express the rule on the number of black cells and white cells 
for each column or row. And as for pattern, the rule is 
expressed by regular expression, using W to represent a white 
cell and B to represent a black cell. The pattern is used to find 
the set of valid cell configurations of a row and check the cell 
configurations of a column if the problem is approached row-
wise. If the problem is approached column-wise, the pattern 
then is used to find the set of valid cell configurations of a 
column and check the cell configurations of a row. In the 
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sample case, the nonogram puzzle is solved with column-wise 
approach.  

The tree yielded by the puzzle-solving process contains 47 
nodes, in which one of them is the root node representing the 
initial state, and only two of them are the states reaching the 
last column. By using backtracking, over 99% of the 
combinations are eliminated in the process without being 
checked. Thus, it can be concluded that backtracking reduces a 
significant number of states generated. This also supported by 
Yu, Lee, and Chen in [3]. 

The size and expected cell pattern of a nonogram puzzle 
about to be solved need to be considered for choosing the most 
efficient approach. This step has to be discussed further to 
prove its validity. 

Aside from how strong the correct approach is related to the 
amount of time required to solve a nonogram puzzle using a 
backtracking algorithm, the algorithm has been shown to 
produce correct results 98% of the time. Given that it also 
provides quick solutions, the backtracking algorithm is 
efficient for sloving nonogram puzzles.  
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